Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+.

نویسندگان

  • Aaron J Coby
  • Flynn W Picardal
چکیده

A recent study (D. C. Cooper, F. W. Picardal, A. Schimmelmann, and A. J. Coby, Appl. Environ. Microbiol. 69:3517-3525, 2003) has shown that NO(3)(-) and NO(2)(-) (NO(x)(-)) reduction by Shewanella putrefaciens 200 is inhibited in the presence of goethite. The hypothetical mechanism offered to explain this finding involved the formation of a Fe(III) (hydr)oxide coating on the cell via the surface-catalyzed, abiotic reaction between Fe(2+) and NO(2)(-). This coating could then inhibit reduction of NO(x)(-) by physically blocking transport into the cell. Although the data in the previous study were consistent with such an explanation, the hypothesis was largely speculative. In the current work, this hypothesis was tested and its environmental significance explored through a number of experiments. The inhibition of approximately 3 mM NO(3)(-) reduction was observed during reduction of a variety of Fe(III) (hydr)oxides, including goethite, hematite, and an iron-bearing, natural sediment. Inhibition of oxygen and fumarate reduction was observed following treatment of cells with Fe(2+) and NO(2)(-), demonstrating that utilization of other soluble electron acceptors could also be inhibited. Previous adsorption of Fe(2+) onto Paracoccus denitrificans inhibited NO(x)(-) reduction, showing that Fe(II) can reduce rates of soluble electron acceptor utilization by non-iron-reducing bacteria. NO(2)(-) was chemically reduced to N(2)O by goethite or cell-sorbed Fe(2+), but not at appreciable rates by aqueous Fe(2+). Transmission and scanning electron microscopy showed an electron-dense, Fe-enriched coating on cells treated with Fe(2+) and NO(2)(-). The formation and effects of such coatings underscore the complexity of the biogeochemical reactions that occur in the subsurface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide interaction with lactoferrin and its production by macrophage cells studied by EPR and spin trapping.

The production of nitrate (NO3-) and nitrite (NO2-) from macrophage-derived NO was studied using EPR and spin trapping. The formation of NO3- was determined via EPR in reactions involving the iron-binding protein, lactoferrin. The formation of NO2- was determined via EPR/spin trapping in the reaction between NO2- and H2O2. Dissolved nitric oxide (NO.) was reacted with lactoferrin yielding an EP...

متن کامل

Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces.

Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, ...

متن کامل

Effects of reducing reagents and temperature on conversion of nitrite and nitrate to nitric oxide and detection of NO by chemiluminescence.

To measure the concentration of nitrites and nitrates by chemiluminescence, we examined the efficiency of five reducing agents [V(III), Mo(VI) + Fe(II), NaI, Ti(III), and Cr(III)] to reduce nitrite (NO2-) and (or) nitrate (NO3-) to nitric oxide (NO). The effect of each reducing agent on the conversion of different amounts of NO2- and (or) NO3- (100-500 pmol, representing concentrations of 0.4 t...

متن کامل

A fast and direct spectrophotometric method for the sequential deter- mination of nitrate and nitrite at low concentrations in small volumes

The use of vanadium (III) has been proposed recently as a suitable alternative to cadmium for the reduction of NO3 to NO2 during spectrophotometric analysis. However, the methods proposed suffer from decreased sensitivity and additional steps for the measurements of nitrite and nitrate. We have developed an improved fast and sequential protocol that permits the determination of low concentratio...

متن کامل

Nitrite Control over Dissimilatory Nitrate/Nitrite Reduction Pathways in Shewanella loihica Strain PV-4.

Shewanella loihica strain PV-4 harbors both a functional denitrification (NO3 (-)→N2) and a respiratory ammonification (NO3 (-)→NH4 (+)) pathway. Batch and chemostat experiments revealed that NO2 (-) affects pathway selection and the formation of reduced products. Strain PV-4 cells grown with NO2 (-) as the sole electron acceptor produced exclusively NH4 (+). With NO3 (-) as the electron accept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 9  شماره 

صفحات  -

تاریخ انتشار 2005